
Int. J. Heat Moss Transfer. Vol. 22, pp. 118771198 
Pergamon Press Ltd. 1979. Printed in Great Britain 

A NUMERICAL CALCULATION OF 

NONLINEAR TRANSIENT HEAT CONDUCTION 

IN THE FUEL ELEMENTS OF A NUCLEAR REACTOR 

G. LEBON and PH. MATHIEU 

Department of Mechanics and Department of Nuclear Engineering, University of Liege, 
Building B6, Sart-Tilman par Liege 1, 4000, Belgium 

(Received 25 May 1978 and in revisedfirm 5 November 1978) 

Abstract-A variational method for the solution of the transient heat transfer problem in nuclear reactor 
elements is proposed. The starting point is Lebon-Lambermont’s variational principle which has proved 
to be particularly adequate in treating heat conduction problems. Kantorovitch’s partial integration 
procedure is used. After selection of a trial function involving two unknown time dependent parameters, 
the temperature distributions in the fuel pin and in the cladding are calculated. In particular, the 
consequences of a shutdown in a nuclear reactor are analyzed. The method is general in that it can be 
applied whatever the nature of the boundary conditions, linear or nonlinear, and the dependence of the 

thermal properties on the temperature. 

NOMENCLATURE 

ratio of outer to inner radii in a hollow 
cylinder; 

c, heat capacity [J kg-’ K-l]; 

f I’2 Helmholtz free energy per unit volume 

[Jmm3]; 

h, convective heat transfer coefficient 

[W m -2K-11; 
k heat conductivity [W m- ’ K - ‘I; 

4, integral defined by equation (4.9); 

.+4, integral defined by equation (4.10); 

n, unit normal ; 

N29 integral defined by equation (4.11); 

4, non-dimensional parameter in the trial 
functions; 

q3 heat flux [Wm-‘1; 

r, radial coordinate in a cylindrical system 

[ml; 
R radius of the central hole in the fuel pin 

O’ [ml; 

R,, external radius of the fuel pin; 

%F inner radius of the clad ; 
R *‘1 outer radius of the clad; 

s,., entropy per unit volume [J m - 3 K - ‘1; 

4 time [s] ; 
7-Y temperature [K] ; 
u,., internal energy per unit volume [J m-"1 ; 
V, volume [m”] ; 
W heat source per unit volume [W me31 ; 
Z, non-dimensional radial coordinate. 

Greek symbols 

thermal expansion coefficient; 
symbol of variation ; 
non-dimensional thickness of a hollow 
cylinder; 
porosity [“,,I ; 
density [kgm-"1 ; 

entropy production per unit volume 
[Wm-” K-l]; 

non-dimensional temperature; 
non-dimensional time. 

Subscripts 

C coolant ; 
F, fuel ; 
G, clad ; 
ref, reference quantity; 
* 

0: 
non-dimensional quantity ; 
initial quantity; 
time derivation. 

1. INTRODUCTION 

THE KNOWLEDGE of transient temperature profiles 

plays an important role in the thermohydraulic 

design of nuclear reactors. In particular, in view of 

simulating accidents, the temperature response of a 
fuel element to a variation of heat sources must be 

known. The problem is highly nonlinear: non- 
linearity arises by requiring that the thermal proper- 

ties, like heat conductivity, heat capacity and density, 
as well as the boundary conditions are temperature 
dependent. 

The purpose of this work is to provide an 
approximate solution with a minimum computing 
time. A variational method has been selected. The 
main advantages of variational techniques are their 
short computational times, their simplicity and the 
fact that the solutions are given in analytic forms. 

The method developed in this paper rests on 
Lebon-Lambermont’s variational principle [ 1, 8, 9, 
I I, 121. Like many other variational criteria of 
continuum physics [2-71, it has to be classified as a 
restricted principle [IO]. It means that some quan- 
tities are to be held constant during the variational 
procedure. 
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After giving a description of the problem to be 
solved (Section 2), the variational criterion is briefly 
presented (Section 3). The explicit expression of the 
functional to be varied is established. 

Using Kantorovitch’s partial integration method, 
an approximate solution is provided in Section 4. 
Numerical results are presented and discussed in 
Section 5. 

2. DESCRIFWON OF THE SYSTEM 

The purpose of this paper is to predict the 
transitory temperature profile in the fuel element 
represented in Fig. 1. The element consists of a 
hollow cylinder of uranium oxide encased in a 
cylindrical metallic cladding. Because the initial time 
is taken after a certain irradiation time, a hole has 
been formed at the centrum of the pin due to 
irreversible structural changes in the fuel material. 
The fuel pin and the cladding are separated by a 
small gap. Heat is generated in the fuel pin by a 
source which is a function of space and time. The 
outer surface of the clad is cooled by a refrigerant 
axial flow. 

/--” r 

ttt 
Coolant 

H, 

FIG. 1. Geometrical representation of a fuel element. 

The actual problem is a moving boundary prob- 
lem since the fuel-clad gap changes with time. In 
the present work, this effect is modelled by assigning 
a time dependence to the gas gap heat transfer 
coefficient and by keeping the distance fuel-clad 
constant. 

Axial and azimuthal effects are ignored so that the 
problem is one-dimensional in space. 

In cylindrical coordinates, the heat conduction equation is given by: 

k,(T) aT + ak,(7;) a7;. -- ~ - + w(r, t), 
r dr o”r i?r 

i = F, G. (2.1) 

Subscript i = F, G refers to the fuel (i = F) and the clad (i = G) respectively. 
When this equation is applied to the clad, the source term must be cancelled, since metallic phase changes 

and chemical reactions with the coolant are not taken into account. In the above equation, T denotes the 
absolute temperature, p the density, c the heat capacity, k the heat conductivity and W the heat source term. 

The appropriate boundary conditions are 

aT, - = 0, 
ar 

at Y = R, 

R,.q,.n = Rl.hFG(t)[& - TG(RB)], at r = R, 

-R,qG.n = R,-h,(t)[T,-T,(R,)], at r = R, 

R,,,q,.n = R,h,,(t)(T, - Tc), at r = R,.. 

n denotes a unit normal vector directed away from the axis of symmetry, h, ,, and h,,, are the gap and coolant 
heat transfer coefficients, supposed to vary with time only; q, and q,, are the heat flux vectors related to the 
temperature gradient by Fourier’s law, 

q = -k c e,. 
Sr 

(2.6) 

e, is the unit vector in the radial direction. In formulating equations (2.3) and (2.4), nonlinear radiative 
boundary terms have been omitted. This contribution has been taken into account by Rafalski and Szczurek 
[13, 141 who used Biot’s variational principle to evaluate the temperature field in a fuel pin with constant 
thermal properties. 

The boundary conditions (2.2)-(2.5) must be complemented by the initial conditions, 

&(O, r) = ToF(r), %(O, r) = TOG(r), (2.7) 

where To, and TOG are given functions of the radial distance. 
It is convenient to formulate the above equations in terms of the following non-dimensional quantities: 

Radial distance: Z=$, (R, =0.212lcm) 
I 

time : 
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temperature: 

density: 

“=$ 
ref 

p* = &, bref = 10.983gcmd3) 

heat capacity: c* = c 
Cref 

heat conductivity: k*=; 
ref 

heat transfer coefficient: + 

ref 

heat source term: 
R; 

w*=----- 
krer Trer 

W. 

As reference values, one has selected the values of the thermal properties of the fuel at a given temperature, 
namely 1000°C. In non-dimensional notation, expressions (2.1)-(2.5) become 

aei a%, k: aei sky aei 
p:c;x=k~s+ZZ+ZZ+Wi*, 

3~0 atZ=Z 
az ’ 0 

-k$ z = l&[8, - 0, (Z,)], atZ=l 

(2.8) 

(2.9) 

(2.10) 

Z,k$ f&‘= h&[e, -$(1)-j, at Z = Z, (2.11) 

-k~~=h&(B,-O,), atZ=Z,. (2.12) 

The method presented in the next sections is general and applies whatever the dependence of the thermal 
properties with respect to 8, Z and 7. 

We shall use the following correlations, which are believed to be a realistic description of the properties of 
the fuel elements. 

(a) Fuel properties. 

Density [ 151: P; = do +dw-3. (2.13) 

p,,, is the theoretical density taken to be equal to the reference density, whence p:, = 1; cq is the thermal 
expansion coefficient. 

Heat capacity [ 161: 

Cf = 0.58179 + 1.002648 -0.878238’ + 0.29324@. (2.14) 

Heat conductivity: k; = k$(@f(c”) 

1.12829 
k; = + 0.04747e3 - 0.07 172 

ef0.1016 
(2.15) 

f(c) = l- 1.029<-0.32 10-3c’z-0.401 10-4<3+0.158 10-5<4. (2.16) 

kz is the thermal conductivity of a 100% dense fuel, expression (2.15) was proposed by Ogawa et al. [ 171; < is 
the porosity (in “/,) assumed to be constant in time but varying radially according to a law E = t(Z) obtained 
experimentally ; expression (2.16) for f(t) was proposed by Biancheria [ 18). 

Internal heat supply: 

W,*(Z, 7) = s(Z)W(7), (2.17) 
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where q(Z) is a given function of Z, and the dependence of W(r) with the time may be chosen in an arbitrary 
way. Two cases will be investigated: 

W(t) = 1 - 5.033, for r < O.l6Y(t < I s) (2.18) 
(1): 

= 0.15. for r 2 O.l6Y(t ? 1 s) (2.19) 

(2): 
W(z) = 1 -.59.17t, for t < O.O169(t < 0.1 s) (2.18’) 

= 0, for z > O.O169(t > 0.1 s) (2.19’) 

Of course, our method is completely independent of the dependence of W*(Z, T) with respect to Z and T. 
Gap heat transfer coefficient, assumed to vary linearly with time according to the law, is: 

/if,, = 4.29 - 20.907, for T < O.l69(t c 1 s) (2.20) 

= 0.76, fort b O.l69(t 2 I s). (2.2 I ) 

Like (2.18) and (2.19), these laws are arbitrary. Initial temperature distribution or,, (Z): given. The values of 

Q,, (Z), g(Z) and ,f(<) are collected in Table 1. 

Table 1. Experimentally given values of some parameters 
in the fuel 

Z 00 g(Z) .l’(i’) 

1 .oooo 1.01338 

0.9500 1.10745 

0.8967 1.2031 I 

0.8397 I .27242 

0.7779 1.37203 

0.7053 1.4962 

0.6233 1.61298 

0.543 I I .6808 

0.4484 1.7745 1 

0.3263 1.8372 I 

0.108 1.88731 

5.6593 

5.108 I 

4.5470 

3.9689 

3.2982 

2.9204 

3.003 

2.6312 

2.2908 

I .9766 

0.927 

0.9293 

0.9183 

0.8969 

0.8339 

0.8348 

0.9794 

0.9794 

0.9794 

0.9794 

0.9794 

(2.22) 

(b) Clad properties. 

Density: 
0.72384 

” = (1+2.1641 lO-28)3 

Heat capacity: 

c; = 1.57806+0.36417(0-0.21445)+4.5837(~-0.58366)3. (2.23) 

Heat conductivity: k; = 3.35102+6.43218. (2.24) 

Internal heat supply: w,* = 0. (2.25) 

The coolant heat transfer coefficient, approximated by a law independent of the coolant flow Reynolds 
number, is : 

h& = 114.1 -585.372, for T < O.l69(t < 1 s) (2.26) 

/it,. = 15.21, for T 2 O.l69(t 3 1 s). (2.27) 

The temperature of the coolant is supposed to be uniform, radially and axially along the cladding but to 
increase linearly with the time up to one second: 

0, = 0.533 +O.O7Yr, for r < O.l69(t < 1 s) (2.28) 

= 0.5463, for r 3 O.l69(t 2 1 s). (3.29) 
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Initial temperature distribution, assumed to vary linearly with the radial distance as 

z-z 
C!&;(Z) = - 0.0447 ’ + 0.5915. 

Z,-Z, 
(2.30) 

3. A VARIATIONAL PROCEDURE 

The variational method rests on Lebon-Lambermont’s variational criterion. 

When deformations are neglected, it is well known [19] that the entropy s of a heated body is a function of 
the internal energy u only. Referring all quantities per unit volume, one has: 

s, = s,(n,). (3.1) 

The index u means that the corresponding quantity is measured per unit volume. 

When the temperature is prescribed everywhere at the surface of the body (Dirichlet’s condition), 

Lebon-Lambermont’s principle can be written as 

with 

6, 
jj 

LdVdt = 0, 
” 7 

L = T2{s,[T-‘] -t&7}. 

(3.2) 

(3.3) 

The quantity s,[T-‘1 is the Legendre transform of s,, with respect to T-r: 

s,,[T-‘1 = s,.-T-‘u,,, 

while 0 is the entropy production generated per unit volume: 

(T = $) (grad T)‘. 

(3.4) 

(3.5) 

An upper dot means derivation with respect to the time, V denotes the volume of the body, t the time 
duration of the process while index t affecting the variation symbol 6 means that T must be frozen during 

variation. Making use of the state equation 

the principle (3.2) becomes: 

U” = 

j 

T 

h444 da, (3.6) 
0 

f 
ssll s T 

4 T p(a)c(a)da+fk(T)(grad T)* dVdt = 0. 1 (3.7) 
v 0 0 

If k is temperature dependent, it must also be kept constant during the variation. 
The variational equations describing the temperature distribution in both the fuel and the clad are a little 

more complicated than (3.7) due to the presence of an internal source term and radiation-type boundary 
conditions. In non-dimensional notation, the principle for the fuel is given by: 

+h s ’ #fc[eF- f?,(z,)]* drl,= 1 = 0. (3.8) 
0 

For the clad, one has 

ZdZdr 

j 

1 

+*z,s h&(t?,-&)*d&=z~~ ++?I 
0 j 

rh~,[8,-eF(l)]2drlz=z,, = 0. (3.9) 
0 

In these expressions, the heat transfer coefficients may depend on the variables Z and r but not on the 
temperature. By varying with respect to OF, one recovers from (3.8) the heat equation for the fuel and the 
appropriate boundary conditions (2.9) and (2.10). In the same way, by varying with respect to eG in (3.9), one 
derives that the necessary conditions for (3.9) to hold true are that equations (2.8) as well as (2.11) and (2.12) 
are satisfied. 
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We shall seek approximate solutions for the temperature profiles in both the fuel and the cladding by using 
Kantorovitch’s partial integration method. It consists of separating the variables Z and T in the trial function 
which is given in the general form : 

M 

(I,(%. T) = 11 /,““(%)cf’(T), I = F. G. (!.I01 

$1 I 

f”“(Z) are (I /~%ri given functions of the space varialbe and q”“(s) are unknown functions. The latter are 

obtained as solutions of the Euler Lagrange equations of the problem. In the present case. they take the form 
of ordinary differential equations of the first order. 

.I. ‘I’k:\II’E:K.\IL RF FIELD IN THE FL’EL ELEMENTS 

By application of the variational operator o respectively to the integrands of (3.8) and (3.9). recalling that 
0 and k*(0) are not to be varied, one obtains: 

For the fuel pin : 

For the cladding: 
f 2, 

IS I 0 z 
ZdZdr+Z,,. 

J’ 
hE,(B-O,)6Bdsl,,, + hb,[H-t),(I)]dBdtl,=,,~ = 0. 

0 

(4.1 b) 

For simplicity, index T affecting symbol 6 has been omitted. Since no confusion is possible, indices F and G 

have also been omitted. 

4. I. Trf~~prrc~t~r~f~,field ill the /Ire/ 
We take for the temperature field 0 a trial function of the form: 

I 
f)(Z, 5) = 

A2 (Z-z,)‘(y, -qz)+q,, (A = 1 -Z,). 

from which, 

(4.2) 

(4.3) 

Physically. q, and q, represent the temperatures of the outer and inner faces respectively. 

Both parameters yi and q, are unknown functions of time. their initial values are determined with the help 
of the least square principle: 

I 
ci 

Si 
f)(Z, 0) -O,,,(Z) 2Z dZ = 0. 

J 
(4.4) 

Z, 

0(Z, 0) is the expression (4.2) wherein y, and q, have been replaced by their initial value: one finds, with the 
experimentally given a,, (Z). 

C/,(O) = 1.0121. L/2(o) = 1.8898 

Substitution of (4.2) and (4.3) in (4.la) produces a linear form 

Q,(Z. T)ch/, -k(j2(%,T)&j2 = 0. 

Since &q, and 6q, are arbitrary, the coelhcients Q, and Q2 must identically vanish 

They are respectively given by: 

p*(‘*(% - %o)2Z dZ 

II’*(%-%,,)‘%d% + 
4 

((/I -c/2) k*(z- Zo)ZZdZ+h;,[q, -O,(Z,)] = 0. 

and 

/‘*‘.*(z-zo)2 
I 

I ~ AI2 ,Z-Z,)~ I%dZ14~{j-~’ p*c,* b -iY (Z-Z,)‘lZdZj 

!* I 

.i I 
bz’* I ~ ;? (Z-Z,,)’ %dZ - ;i (y, -qz) 

I’ 
li*(Z-%,)‘ZdZ = 0. 

%, z,, 

(4.5, 

(4.6) 

(4.7) 

(4.8) 



Setting : 

Nonlinear transient heat conduction in the fuel elements of a nuclear reactor 

~j=~ 

i 

‘1 

p*c*(Z-Z,)‘jZdZ, j = 0, I,2 
. /,, 

Mj=$ 
/ 

‘1 
W*(Z-Z,)‘ZdZ, j = 0,2 

I /,, 

N, =& 
I 

*1 
k*(Z- ZJ2Z dZ, 

. /,, 

expressions (4.7) and (4.8) may be written as 

i 

Z-1 L1 -L2 4N2+V,, -4N, 41 Mz+hT<,Q(,(Z) 

L,-L, L,-2L,+L, ,i i 

41 + 

92 c \ -4N, ,( 1 4N, q, = ( i M,-M, ’ 

or in a compact form, 

A.lj+B.q = c, 

where A and B are symmetric matrices and C a vector. Solving with respect to q yields: 

q+D,q=d, 

where 

D=A-‘.B, d=A-1.C. 

1193 

(4.9) 

(4.10) 

(4.11) 

(4.12) 

(4.13) 

(4.14) 

(4.15) 

In most problems, equation (4.14) is a nonlinear differential equation since generally D and d depend 
themselves on q through the integrals Lj, Mj and N,. In the particular case that the thermal properties as well 
as the source term are temperature-independent, equation (4.14) becomes linear and its solution is simply 

-I 1 

‘r 

q(7) = eCD’ en’d(r)dcc+q(O) (4.16) 
.0 

4.2. Temperaturejield in the cladding 

The trial function is selected to be of the same form as for the fuel pin, i.e. 

QZ, 7) =; (Z,,-Z)2(q3-q?)+qjr (A = Z, - Zg), (4.17) 

q4 and q3 being respectively the outer and inner surface temperatures of the cladding. 
Following the same procedure as in Section 4.1, one obtains the set of ordinary differential equations: 

( 

L, L, -L, 43 

,i 1 
+ 

i 

4N, + h& - 4N, q3 

!i ) C 

Mz+hT,,O,(l) = 
L,-L, L,-2L,$L, (i4 -4N, 4N, + Z,.h& q4 >W’ (I( 1 -M2+M0+7*h* .fl. 

(4.18 
(J 

The integrals Lj, Mj and N, are the same as integrals (4.9) to (4.11) except that the lower and upper bounds 
are now Z, and Z, respectively and A = Z, - Z, instead of I - Z,. 

This system may be written in the same matricial form as (4.14) and its solution is still expressed by (4.16). 

In a hot state, after a sufficient irradiation time, the fuel pin expands by dilatation and comes in contact 
with the cladding so that Z, = ZJ = 1 [20] ; Z, is taken to be equal to 1 .l9. 

The temperature profile in the cladding is strongly correlated to what happens in the fuel: as seen in (4.18), 
it depends on the value of Q,:(l), derived from the fuel analysis. In the same way, it appears from (4.12) that 
the fuel temperature distribution depends on the value of @,(Z,). In that respect. the problem is a coupled 
one. 

In a previous work [20], we completely uncoupled the problem by assuming that the temperature H,,(Z,) at 
the inner surface of the cladding and the heat flux qr; through this face are extrapolated at each time step. 

These restrictions are relaxed in the present work. 

4.3. Test ofthe quality qf‘the tria[,finctions 
By appealing to a variational technique involving either “exact” or restricted variational principles, the 

crucial point is the selection of the most adequate trial function. Clearly, the better the choice of the trial 
function, the better the final result. To check the quality of the expansions (4.2) and (4.17) we compare with a 
similar linear problem whose exact solution is known. 
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It is the case for the problem of transient heat conduction in an infinite hollow cylinder (1 < L < n) whose 
lateral surface are submitted to the following radiation-type boundary conditions: 

(‘0 
G = hy(e- fj,), at Z=l 

(4.19) 

h: and hz are the heat transfer coefficients at the surfaces Z = I and Z = a respectively, 0, and fl, the 
constant temperatures of the surrounding media. For constant thermal properties and in absence of internal 

heat supply, the temperature profile is known and explicitly given in [21]. 
The variational and the exact solutions are compared in Table 2. The differences observed are of the order 

of I’:;,, which attests of the quality of the selected trial function. If the selected trial function had given poor 
results for this simplified problem, it is clear that it would have been inadequate for the more complicated fuel 
element problem. 

5. NUMERICAL ANALYSIS 

5.1. The numerical scheme 
Instead of solving (4.14) by classical methods, like 

Runge-Kutta-Gill’s technique, the nonlinear heat 

conduction problem has been approximated by a 

succession of linearized problems in order to reduce 
the computational time. If the macro-time interval 

0 -T is divided into several micro-steps A7 sufficiently 
small, the thermal quantities and the heat source 
may be considered as constants, as well as D and d. 

Under these conditions, (4.16) furnishes an explicit 
finite difference scheme for the integration of (4.14) 

and can be written as 

q(r+Ar) = (I-e -DAr)D-‘~d+q(r)e-DA’, 

(5.1) 

where I IS the unity matrix. 
To solve equation (5.1), one has the choice 

between three methods [22]. 
1. The forward explicit difference method: this 

consists of developing the matrix exp( -AtD) in a 
series expansion limited to the first order term in Ar. 

namely 
exp( - ArD) = I- A70. (5.2) 

2. The backward implicit difference method: the 

matrix exp( - A&) is approximated by (i + ArD) I. 

3. The Crank-Nicolson implicit method which 
approximates the exponential term by: 

It is interesting to compare the respective merits of 

these three methods. 
While the first method is explicit, the two other 

ones are implicit, which implies the solution of a 
matrix problem. 

A stability analysis based on Lyapounov’s second 
method shows that the matrix approximations used 
in the backward difference and the Crank-Nicolson 
methods are unconditionally stable. On the other 
hand, the forward difference method is only stable 
for a time step obeying the following criterion: 

(54) 

the i.,‘s are the eigenvalues of D, Re means their real 
part and 13.,1 their norm. 

Concerning the accuracy, the two first schemes are 
of the first order in A7 while the Crank-Nicolson 

scheme is of the second order in AZ. The latter one is 
undoubtedly the most efficient from the numerical 
point of view. However, for a numerical code 
involving the shortest computing time, the explicit 

method is recommended. 
Although the differential equation is given in 

matrix form, the numerical procedure based on an 

explicit method does not require the manipulation of 
matrices. Indeed, expression (5.1) reduces to a set of 

algebraic equations involving only exponential terms 
like exp( - AZ&) coming from the diagonalization of 

the exponential matrices. 
Moreover, since a piecewise linear approach is 

used to handle the non-linearities, the updating of D 
and d at each time step is .required. Once more, 
the explicit scheme (5.1) is the most appropriate 
technique for achieving this objective. 

For all these reasons, the forward explicit differ- 
ence scheme has been retained in the present work. 
The limitation on the time-step At imposed by (5.4) 

is not an important handicap with respect to implicit 
methods. Indeed, to attain a sufficient accuracy in an 

implicit scheme, the time step must be reduced until 
there is a negligible difference between two successive 
solutions. This needs several heavy programme 
executions. By using an explicit method, one avoids 
such additional calculations; the step size A7 is 
selected as large as possible within the limits 

imposed by (5.4). Of course, to follow the fast 
transients of the present problem, A7 will be chosen 
very short so that the restrictions prescribed by (5.4) 
are practically not constraining. 

The time step A7 is at most equal to twice the 
inverse of the greatest eigenvalue of D in order to 
ensure stability of (5.1). In each micro-step A7, the 
Kantorovitch procedure is repeated by taking as 
initial value for q the value computed at the end of 
the previous micro-step. In the coupled problem, the 
numerical calculations run as follows. The eigen- 
values of D are calculated in the fuel pin and in the 
cladding successively and the corresponding time 



Nonlinear transient heat conduction in the fuel elements of a nuclear reactor 1195 

steps Ar,. and Ar,, in each of them are determined; 
At,. is found to be of the order of lOOAr,;. 

The temperature distributions in the fuel pin, and 
in particular the outer surface temperature e,.(l), are 
predicted by (5.1) at the end of a micro-step AZ,.. 
During each step AZ,., the clad temperature distri- 
bution is then calculated with the help of (5.1) 
wherein Ar = AZ,; until the value Ar,. has been 
reached. The inner clad temperature 0,(l) is then 
obtained. That value could be used to correct e,.(l). 
The new value of Q,.(l) should allow itself the 
correction of Q,;(l). It has been verified that such a 
process does not increase significantly the precision 
so that a prediction-correction procedure is not 
necessary. The previous operations are repeated at 
each time step At,- until the stationary state is 
reached in both the fuel pin and the cladding. 

The method developed here presents the advan- 
tage of very short computational times. With an 
I.B.M.370/158 computer, the C.P.U. time is of the 
order of 80sec to reach the steady state. Of course, 
by using more unknowns, the dimension of the - - 
matrices A, B, C would increase and consequently the 
computing time. 

5.2. Results and discussion 
The fuel inner radius is taken to be equal to 10% 

of the external radius. The experimental source term 
g(Z) and the porosity factor f[<(Z)] are assumed to 
be fitted by the following Fourier expansions: 

In=1 \ l--Lo / 

The parameters a,,, and b, have been computed by a 
least square method. 

The temperature profiles are presented in Figs. 2 
and 3. During the decay in intensity of the heat 
source (from 100 to 15% of its initial value in 1 s in 
the first case, and from 100 to 0% in 0.1 s, in a second 

FIG. 2. Temperature profiles in the fuel pin as a function of FIG. 4. Temperature profiles in the cladding as a function 
the radial distance and the time. The heat source drops of the radial distance and the time. The heat source drops 

from 100 to 15% of its initial value in 1 s. from 100 to 15% of its initial value in 1 s. 

1 

- 0.3 0.5 1 0.7 

FIG. 3. Temperature profiles at the inner and outer faces of 
the fuel pin for two different behaviours of the heat source: 

(1) decrease from 100% to 15% of its initial value in 1 s 
(continuous lines); 

(2) decrease from 1007; to zero in 0.1 s (dashed lines), 

case), the following qualitative behaviour of the fuel 
element has been observed. The fuel temperature on 
the inner face of the central. hole falls down 
continuously while it increases at the outer face; this 
phenomenon is observed during the decay of the 
source term. After that the source intensity is kept 
constant, the temperature decreases again at the 
outer face. This behaviour is due to the decay of the 
convective heat transfer coefficient h:,;. 

The stationary state in the fuel is reached after 
3.64s in the first case, and after 2.4s in the second 

1 

I 

1.00 1.04 1.00 112 1.16 Z 
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Table 2. Comparison between the exact efhcor and the variational 0,;,, temperature profiles in a 
hollow cylinder (linear problem) 

\\ 

Z\, r 0.1 0.2 0.3 0.35 

1.039 2.686 2.649 2.761 
1.059 2.664 2.631 2.737 
1.079 2.644 2.611 2.715 
1.099 2.627 2.599 2.696 
1.119 2.611 2.586 2.680 
1.139 2.599 2.574 2.666 
1.159 2.588 2.564 2.654 
1.179 2.580 2.555 2.646 
1.199 2.515 2.548 2.639 
1.219 2.571 2.542 2.636 

t? \.,r 

2.193 
2.777 
2.761 
2.745 
2.730 
2.715 
2.700 
2.687 
2.673 
2.659 

2.765 
2.740 
2.719 
2.699 
2.683 
2.669 
2.657 
2.649 
2.642 
2.699 

0 
!.lr 4tlcw 8 >.>r 

2.806 2.165 2.807 
2.790 2.740 2.79 1 
2.774 2.719 2.775 
2.758 2.700 2.759 
2.743 2.683 2.743 
2.727 2.669 2.728 
2.713 2.651 2.713 
2.698 2.649 2.699 
2.684 2.642 2.684 
2.670 2.639 2.670 

Table 3. Variation in time of the following quantities: temperature at the inner (qJ and 
outer (4i) faces of the fuel pin, temperature at the inner (qJ) and outer (q4) faces of the 

clad ; inner heat flux through the clad (q(;. n) 

T e,& 
0 0 1.890 1.012 0.592 0.547 1.804 

0.058 0.343 1.814 1.054 0.582 0.533 1.461 
0.105 0.619 1.654 1.086 0.579 0.559 1.069 
0.162 0.960 1.404 1.133 0.578 0.568 0.502 
0.198 1.170 1.316 1.105 0.577 0.569 0.400 
0.303 1.796 1.145 0.996 0.571 0.565 0.322 
0.401 2.373 1.070 0.948 0.568 0.562 0.288 
0.494 2.924 1.050 0.935 0.568 0.562 0.279 
0.616 3.650 1.046 0.932 0.567 0.562 0.277 

Table 4a. Effects of the nonlinearities on 
the temperature profile in the fuel 

Relative error 9; 

-\\ T \ 

\\;i; 
0.139 0.439 

Z 

0.1 23.9 13.4 
0.2 23.8 13.4 
0.3 23.6 13.3 
0.4 23.3 13.1 
0.5 22.x 12.9 
0.6 22. I 12.4 
0.7 21.5 12.0 
0.8 20.5 11.4 
0.9 19.4 10.7 
1.0 18.1 10.0 

case. In fact, the stationary state is an equilibrium 
one characterized by a uniform temperature 
distribution. 

The temperature field in the cladding is reported 
on Fig. 4 for the first case. There is a temperature 
jump at the interface between the fuel and the 
cladding due to the thermal resistance of the contact. 
The inner clad temperature decreases gradually to its 
stationary value while the outer temperature in- 
creases practically until the coolant temperature 
becomes constant (after 1 s); afterwards, it decreases 
to its stationary value. The temperature in the clad 

Table 4b. 

Temperature 
dependent Constant thermal 

Step number thermal properties properties 
z Ar,/k, = Ar, :Ar,, 

1 0 0 
54 24 

2 0.018 0.020 
98 24 

3 0.057 0.062 
98 24 

4 0.096 0.104 
98 24 

5 0.0135 0.146 
24 

12 0.342 0.438 
52 24 

13 0.363 0.480 
50 

14 0.382 Stationary state 

19 

20 

0.476 
46 

0.495 
Stationary state 

reaches its steady value faster than does the 
temperature in the fuel. Moreover, the former varies 
in a range of only 0.4’/;; while the heat flux through 
the inner face of the clad drops appreciably (see 
Table 3). 
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To examine the effects of the nonlinearities, we 
have repeated the calculations by assuming that all 
the thermal properties are constant and equal to 
their value corresponding to the mean temperature 
8 = 1.58. The fuel temperature distribution has been 
calculated at various instants of time for a drop of 
the heat source from its initial value to zero. The 
relative error with respect to the values calculated in 
the nonlinear case ranges between 10 and 24% (see 
Table 4a). Moreover, the ratio of the time steps 
As,/Az,, is now constant (see Table 4b) and equal to 
24 while for the nonlinear problem it varies from 
step to step with a maximum value equal to 98. The 
stationary state is obtained after 20 steps in the 
nonlinear problem, after 13 steps in the linear case. 
All these results indicate clearly that the non- 
linearities play an important role. 

6. CONCLUSIONS 

The transient temperature field in a fuel element 
has been computed by using Kantorovitch’s vari- 
ational technique. The method involves only two 
pairs of unknown parameters which are determined 
as solutions of four ordinary differential equations. 
The method is general in that it can be applied 
whatever the dependence of the thermal properties, 
the internal heat source terms and the boundary 
conditions with respect to the temperature or the 
space and time variables. The analysis has been 
restricted to a one-dimensional problem in space. 

The extension to two or three dimensions should 
not raise fundamental difficulties but would com- 
plicate the procedure in that more involved trial 
functions must be selected. The same method can be 
easily extended for temperature dependent heat 
sources and heat transfer coefficients. 

For the linear problem of heat conduction in an 
infinite hollow cylinder, the results of the variational 
method have been compared with the exact ones: an 
accuracy of I”;, has been obtained. It is reasonable to 
expect the same order of accuracy for the problem of 
the heat transfer in the fuel element. This accuracy is 
more than sufficient for most situations encountered 
in nuclear engineering. 

Acktznwled~emenfs-The problem treated in this paper has 
been brought to our attention by the society Belgonuc- 
leaire, Brussels. Financial support as well as valuable 
discussions with the staff of its division “Etudes Com- 
bustibles” is gratefully acknowledged. 

1. 

6. 

7. 

8. 

9. 

IO. 

ii, 

12. 

13 

14 
15 

I6 

I7 

18. 

19. 

20. 

21. 

22. 

REFERENCES 

G. Lebon, A new variational principle for the non- 
linear unsteady heat conduction problem, Q. J. Mech. 
Appl. Math. 29,499-509 (1976). 
I. Prigogine and P. Glansdor~, Variational properties 
and fluctuation theory, Physica 31, 1242- 1256 (1965). 
P. Glansdorff and I. Prigogine, Strucrure, StahilitJ* and 
Fluctuations, Chap. X. Wiley, New York (1972). 
I. Gyarmathi, No~-~~ui~ib~ia~ Ther~od~nu~ics. 
Springer, Berlin (1971). 
M. Biot, Variational Principles in Heat Tramfer, Chap. 
I, Oxford Math. Mono., Oxford University Press, 
Oxford (1970). 
B. Vujanovic, An approach to linear and non-linear 
heat transfer problem using a Lagrangian, AIAA JI 9, 
131-134 (1971). 
B. Vujanovic and D. Djukic, On a new variational 
principle of Hamilton type for classical field theory, 
Z.A.M.M. 91,61 I-616 (1971). 
G. Lebon and J. Labermont, Generaii~tion of 
Hamilton’s principle to continuous dissipative systems, 
J. Chem. Phys. 59,2929-2936 (1973). 
G. Lebon and J. Lambermont, A general variational 
criterion for chemically active continuous media, Atmln. 
Phys. 32,425-432 (1975). 
B. Finlayson, The Method of Weighted Residuals, Wiley, 
New York (1971). 
G. Lebon and J. Casas, Lagrangian fo~ulation of 
unsteady non-linear heat transfer problems, J. Engng 
Math. 8, 31-44 (1974). 
G. Lebon and P. Mathieu, Plane Couette Row of an 
incompressible non-Newtonian fluid with temperature 
dependent viscosity, J. Engng Math. 6, l--l 3 (1972). 
P. Rafalski and J. Szczurek, Transient heat conduction 
in multiregion systems with non-linear boundary 
conditions with an application to nuclear reactors, 
Nucl. Engng Design 9, 123-I 30 (1969). 
P. Rafalski, private communication (1977). 
J. B. Conway, R. M. Fincet and A. R. Hein, The 
thermal expansion and heat capacity of UO, at 
2.2Oo’C, Trans. A.N.S. 1, 153-157 (1963). 
J. F. Kerrisk and D. G. Clifton, Smoothed values of the 
enthaipy and heat capacity of UO,. Nzacl. Tech. 16, 531 
(1963). 
S. Y. Ogawa, E. A. Lees and M. F. Lyons, Power 
reactor high performance UO, program. Fuel Design 
Summarv and Progress Status. GEAP-5591 (1968). 
A. Biancheria, TIhe effect of porosity 0; thermal 
conductivity of ceramic bodies, Trans. A.N.S. 9, 15-22 
(1966). 
S. R. De Groot and P. Mazur, No~-e4ai~jbrjam 
?‘hermod~namics, Chap. III, North-Holland, Amster- 
dam (1982). 
G. Lebon. Ph. Mathieu and J. Van Vliet. ModeliIla of 
the transiknt heat transfer in a nuclear reactor fuel;od 
using a variational procedure, to be published in Nucl. 
E&g Design 51,1~3-142 (1979). 
H. S. Carslaw and J. C. Jaeger. C~~7~~cr~~~ nl Heat in 
Solids, $13.4, Clarendon Press, oxford (1959). 
R. S. Varga, Matrix lterntive Analysis, Series in 
automatic computation, Englewood Cliffs. Prentice 
Hall (1962). 

CALCUL NUMERIQUE DE LA CONDUCTION THERMIQUE TRANSITOIRE ET NON- 
LINEAIRE DANS LES ELEMENTS COMBUSTIBLES DE REACTEUR NUCLEAIRE 

R&urn&On propose une m6thode variationnelle pour r6soudre le probl&me du transfert thermique en 
rigime transitoire dans les Qltments d’un reacteur nuclbaire. Le point de dipart est le principe 
variationnel de Lebon-Lambermont, lequel s’est r&&l& btre particuli&ement efficace pour traiter ies 
problimes de conduction thermique. On utilise la mi?thode par inttgration partieile de Kantorovitch. 
Apr& avoir s&ctionn8 une fonction d’essai mettant en jeu deux paramitres inconnus mais fonction du 
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temps, on calcule la distribution de la temperature dans le crayon combustible et dans la gaine. On 
analyse en particulier les consequences d’une chute de barres dans un reacteur nucleaire. La methode est 
generale en ce sens qu’elle est susceptible d’&re appliquee quelle que soit la nature des conditions aux 
limites, lintaires ou non-lineaires, et la forme de la dependance des proprittes thermiques vis-a-bib de la 

temperature. 

YMCJIEHHbIfi PAC=@T HEJIWHERHOrO HECTAUHOHAPHOI-0 IlPOyECCA 
TE~JIOIlPOBO~HOCTM B TB3JIax RAEPHOrO PEAKTOPA 

Aii~omuna- ~P’WlOlKeH BapkaUHOHHbIti MeTOn ~UIeHWl HeCTaUHOHapHOi 3aMW TeUJlOKlpOBO~- 

HOCTHB TB3Jlax n~epHoropeaxTo~.3aOC~0~y~311TBapHaUHOHHbI~npHHUHn fle6oHa-JlaM6epMoHa, 
CU,,aBeLWHBOCTb KOTOpOrO 6brna UpOBewHa IlpH peUleHHH 3aLla'l TeIIJlOll~BO~HOCTH. kiCIlOJIb3OBaH 

MeTOn KaHTOpOBH'ia HHTWpHpOBaHHS llHl$@~HUHaJIbHbIX )'paBHeHHii B YaCTHblX UpOH3BOnHbIX. 

nOCJte Bb16OIXi npo6eoii (bYHKUH&i, B KOTOpYlO BXOllllT IIBa H‘ZH3BeCTHbIX. 3aBHCRLUHX OT B~MeHH. 

napaueTpa, paccreTbmaercn pacnpenenetise TeMnepaTyp B cTepmHe M B o6onoqne 3nehteHTa. 
B qacTHocTH, npoeeneH asana3 nocnencTBG 0cTaHoBKH RnepHoro pearTopa. MeTon 5mnem4 
06UUiM. TIK KaK er0 MO)I(HO WCUO,lb30BaTb IIpH nlo6Mx rpaHWiHbIX YCJlOBLixX, JlHHeiiHbIX HJIA 

H‘Z,,HHefiHblX, U npk, JaBWCUMOCTB TenJlO~H3HireCKHXCBOkTB OT TeM,,epT,'pbI. 

NUMERISCHE BERECHNUNG VON NICHTLINEARER INSTATIONARER 
W;iRMELEITUNG IN DEN BRENNELEMENTEN EINES KERNREAKTORS 

Zu.sammenfassungPEs wird eine Variations-Methode zur LGsung des instationsren Warmetran- 
sportproblems in den Brennelementen eines Kernreaktors vorgeschlagen. Ausgangspunkt ist das 
Variations-Prinzip von Lebon-Lambermont, das sich zur Behandlung von WBrmeleitproblemen als 
besonders geeignet erwiesen hat. Das partielle Integrations-Verfahren von Kantorovitch wird angewandt. 
Nach Auswahl einer Ausgangs-Funktion mit zwei unbekannten zeitabhiingigen Parametern wird die 
Temperaturverteilung im Brennstab und dessen Ummantelung berechnet. Insbesondere werden die 
Folgen einer Reaktofabschaltung analysiert. Die Methode ist allgemein und kann insofern fiir ---lineare 
oder nichtlineare---beliebige Randbedingungen sowie fiir beliebig temperaturabhingige Stoffeigenschaften 

angewendet werden. 


