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Abstract—A variational method for the solution of the transient heat transfer problem in nuclear reactor
elements is proposed. The starting point is Lebon—Lambermont’s variational principle which has proved
to be particularly adequate in treating heat conduction problems. Kantorovitch’s partial integration
procedure is used. After selection of a trial function involving two unknown time dependent parameters,
the temperature distributions in the fuel pin and in the cladding are calculated. In particular, the
consequences of a shutdown in a nuclear reactor are analyzed. The method is general in that it can be
applied whatever the nature of the boundary conditions, linear or nonlinear, and the dependence of the
thermal properties on the temperature.

NOMENCLATURE a, entropy production per unit volume
ratio of outer to inner radii in a hollow [Wm™*K~™1];
cylinder; 0, non-dimensional temperature;
heat capacity [Jkg "' K~1]; T, non-dimensional time.
Helmbholtz free energy per unit volume
[Im~3]; Subscripts
convective heat transfer coefficient C, coolant;
[(Wm™2K™']; F,  fuel;
heat conductivity [Wm~' K ~']; G, clad;

integral defined by equation (4.9);
integral defined by equation (4.10);
unit normal;

integral defined by equation (4.11);
non-dimensional parameter in the trial
functions;

heat flux [Wm™?];

radial coordinate in a cylindrical system
[m];

radius of the central hole in the fuel pin
[m];

external radius of the fuel pin;

inner radius of the clad;

outer radius of the clad ;

entropy per unit volume [Jm K ~'];
time [s];

temperature [K];

internal energy per unit volume [Jm™3];
volume [m*];

heat source per unit volume [Wm™3];
non-dimensional radial coordinate.

Greek symbols

thermal expansion coefficient ;

symbol of variation;

non-dimensional thickness of a hollow
cylinder;

porosity [*,];

density [kgm™*];

ref, reference quantity;

R non-dimensional quantity;
0, initial quantity;

,, time derivation.

1. INTRODUCTION

THE XNOWLEDGE of transient temperature profiles
plays an important role in the thermohydraulic
design of nuclear reactors. In particular, in view of
simulating accidents, the temperature response of a
fuel element to a variation of heat sources must be
known. The problem is highly nonlinear: non-
linearity arises by requiring that the thermal proper-
ties, like heat conductivity, heat capacity and density,
as well as the boundary conditions are temperature
dependent.

The purpose of this work is to provide an
approximate solution with a minimum computing
time. A variational method has been selected. The
main advantages of variational techniques are their
short computational times, their simplicity and the
fact that the solutions are given in analytic forms.

The method developed in this paper rests on
Lebon-Lambermont’s variational principle [1, 8, 9,
11, 12]. Like many other variational criteria of
continuum physics [2-7], it has to be classified as a
restricted principle [10]. It means that some quan-
tities are to be held constant during the variational
procedure.

1187



1188 G. LEBON and PH. MATHIEU

After giving a description of the problem to be =
solved (Section 2), the variational criterion is briefly
presented (Section 3). The explicit expression of the i
functional to be varied is established. l

Using Kantorovitch’s partial integration method,
an approximate solution is provided in Section 4. Fuel | Gap |Clod HT
Numerical results are presented and discussed in Coolant
Section 5.

2. DESCRIPTION OF THE SYSTEM L&

The purpose of this paper is to predict the R
. . H
transitory temperature profile in the fuel element R
g

represented in Fig. 1. The element consists of a

hollow cylinder of uranium oxide encased in a R
cylindrical metallic cladding. Because the initial time FIG. 1. Geometrical representation of a fuel element.
is taken after a certain irradiation time, a hole has The actual problem is a moving boundary prob-

been formed at the centrum of the pin due to lem since the fuel~clad gap changes with time. In
irreversible structural changes in the fuel material.  the present work, this effect is modelled by assigning
The fuel pin and the cladding are separated by a a time dependence to the gas gap heat transfer
small gap. Heat is generated in the fuel pin by a coefficient and by keeping the distance fuel-clad
source which is a function of space and time. The constant.

outer surface of the clad is cooled by a refrigerant Axial and azimuthal effects are ignored so that the
axial flow. problem is one-dimensional in space.

In cylindrical coordinates, the heat conduction equation is given by:

0 T, k(T) dT, 0k(T) 0T,
piT)eAT) = T, = ki(T)) —5 + —+t—
ot or ror or  oOr
Subscript i = F, G refers to the fuel (i = F) and the clad (i = G) respectively.

When this equation is applied to the clad, the source term must be cancelled, since metallic phase changes
and chemical reactions with the coolant are not taken into account. In the above equation, T denotes the
absolute temperature, p the density, ¢ the heat capacity, k the heat conductivity and W the heat source term.

The appropriate boundary conditions are

Wi, 1), i=F,G 2.1

aal: =0, atr=R, 2.2)

Rigp n= R hpe()[ T - T5(R,)], atr=R; (2.3)
— R4 n = Rhpe(t)[Te — Te(R,)], atr=R, (2.4)
R,qg n= R, hee(t)(Tg—T¢), atr=R,,. (2.5)

n denotes a unit normal vector directed away from the axis of symmetry, 4, and h,; are the gap and coolant
heat transfer coefficients, supposed to vary with time only; q, and q,, are the heat flux vectors related to the
temperature gradient by Fourier’s law,
- —k 2

q= —k ™ e, (2.6)
e, is the unit vector in the radial direction. In formulating equations (2.3) and (2.4), nonlinear radiative
boundary terms have been omitted. This contribution has been taken into account by Rafalski and Szczurek
[13, 14] who used Biot’s variational principle to evaluate the temperature field in a fuel pin with constant
thermal properties.

The boundary conditions (2.2)—(2.5) must be complemented by the initial conditions,

Te(0, r) = Top(r), T5(0, r) = Tog(r), (2.7)

where T,p and T, are given functions of the radial distance.
It is convenient to formulate the above equations in terms of the following non-dimensional quantities:

r
Radial distance: Z= R (R, = 02121 cm)
;
kref

time: T=5% .
prrefcref
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T
temperature: 0=—
7:'ef
density: p* = L, (Ores = 10.983gem ™)
Pref
. c
heat capacity: c* = -
ref
.. k
heat conductivity: k* = —
kref
. R,
heat transfer coefficient: h*=-—=h
ref
R2
heat source term: W* = L_w.
krefT;-ef

As reference values, one has selected the values of the thermal properties of the fuel at a given temperature,
namely 1000°C. In non-dimensional notation, expressions (2.1)—(2.5) become

L 0%, kroe, ok o,

por L= kE W, 28
P e =Y az2 7 zoz " sz oz 28)
with

0%

Eé =0, atZ=2, (2.9)
20,
—k¥ 2z h¥[0r—605(Z,)], atZ=1 (2.10)
* 99, *
ngc§=hm[96—0p(1)], atZ =2, (2.11)
20,;

kg — = Helle —0c), atZ =2, (2.12)

The method presented in the next sections is general and applies whatever the dependence of the thermal
properties with respect to 6, Z and t.

We shall use the following correlations, which are believed to be a realistic description of the properties of
the fuel elements.

(@) Fuel properties.
Density [15]: p¥ = px[1+ap(6)0] 2. (2.13)

., is the theoretical density taken to be equal to the reference density, whence pf, = 1; o, is the thermal
expansion coefficient.
Heat capacity [16]:

c¥ = 0.58179 + 1.002646 — 0.878236> +0.293246°. (2.14)

Heat conductivity: k¥ = k§(0) (&)

1.12829
X = 40.047476°—-0.07172 (2.15)
6+0.1016
(&) =1—1.029 —0.321073¢2 ~0.401 107 4£* +0.158 107 %&%, (2.16)

* is the thermal conductivity of a 100% dense fuel, expression (2.15) was proposed by Ogawa et al. [17]; ¢ is
the porosity (in %) assumed to be constant in time but varying radially according to a law ¢ = ¢(Z) obtained
experimentally ; expression (2.16) for f(&) was proposed by Biancheria [18].

Internal heat supply:

WH(Z, 1) = g(Z)W(2), (2.17)
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where ¢(Z) is a given function of Z, and the dependence of W(r) with the time may be chosen in an arbitrary
way. Two cases will be investigated:

Wi(t) =1-50321, fort<0.169(t < 15s) (2.18)

() =0.15, for T > 0.169(1 > 1) (2.19)
_ Wit) = 1-59.17z, forz < 0.0169(t < 0.1s) (2.18)
@) =0, for 7 > 0.0169(t = 0.15) (2.19))

Of course, our method is completely independent of the dependence of W*(Z, t) with respect to Z and 1.
Gap heat transfer coefficient, assumed to vary linearly with time according to the law, is:

k%, =429-2090r, fort < 0.169(t < 1s) 2.
= 0.76, for v > 0.169(t > Is). @.

Like (2.18) and (2.19), these laws are arbitrary. Initial temperature distribution 8,,(Z): given. The values of
0o1(Z), g(Z) and f (&) are collected in Table 1.

Table 1. Experimentally given values of some parameters

in the fuel
z b, 9(Z) AS]
1.0000 1.01338 0.927
5.6593
0.9500 1.10745 0.9293
5.108t
0.8967 1.20311 09183
4.5470
0.8397 1.27242 0.8969
3.9689
0.7779 1.37203 0.8339
3.2982
0.7053 1.4962 0.8348
2.9204
0.6233 1.61298 0.9794
3.003
0.5431 1.6808 0.9794
2.6312
0.4484 1.77451 0.9794
2.2908
0.3263 1.83721 0.9794
1.9766
0.108 1.88731 0.9794
(b) Clad properties.
Densit . 0.72384 (2.22)
ensity: = . .
Y P = (1721641 10 20)
Heat capacity:
c* = 1.57806 +0.36417(8 —0.21445) + 4.5837(0 — 0.58366)°. (2.23)
Heat conductivity: k¥ = 3.35102+6.43210. (2.24)
Internal heat supply: Wk =0 (2.25)

The coolant heat transfer coefficient, approximated by a law independent of the coolant flow Reynolds
number, is:

ht. = 114.1-585371, fort < 0.169(t < 1s) (2.26)
h¥e = 1521, for T > 0.169(t > 1). (2.27)

The temperature of the coolant is supposed to be uniform, radially and axially along the cladding but to
increase linearly with the time up to one second:

0, = 0.5334+0.0797, fort < 0.169(r < 15s) (2.28)
= (0.5463, fort = 0.169(t > 1s). 2.29)
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Initial temperature distribution, assumed to vary linearly with the radial distance as

zZ-Z
B0c(2) = —0.0447 2 +0.5915. (2.30)

w g

3. A VARIATIONAL PROCEDURE
The variational method rests on Lebon-Lambermont’s variational criterion.
When deformations are neglected, it is well known [19] that the entropy s of a heated body is a function of
the internal energy u only. Referring all quantities per unit volume, one has:
5, = 5,(1,) (3.1)

The index v means that the corresponding quantity is measured per unit volume.
When the temperature is prescribed everywhere at the surface of the body (Dirichlet’s condition),
Lebon-Lambermont’s principle can be written as

6,J JLdth:O, 3.2)
VvV Jr

with
L=Ts[T '] +1i0). (3.3)

The quantity s,[ T ~'] is the Legendre transform of s, with respect to 7~ !:
s [T ]=s~-T"u, (3.4)

while ¢ is the entropy production generated per unit volume:

6= k;# (grad T)%. (3.5)

An upper dot means derivation with respect to the time, ¥ denotes the volume of the body, ¢ the time
duration of the process while index t affecting the variation symbol § means that T must be frozen during
variation. Making use of the state equation

T
u, = j pla)e(a)de, (3.6)

0

the principle (3.2) becomes:

t T
é,f J [T I pla)c(e) do+1k(T)(grad T)z}dth =0. (3.7)
vV JO 0

If k is temperature dependent, it must also be kept constant during the variation.

The variational equations describing the temperature distribution in both the fuel and the clad are a little
more complicated than (3.7) due to the presence of an internal source term and radiation-type boundary
conditions. In non-dimensional notation, the principle for the fuel is given by:

t Ml 8 60,‘ 2 0F
6,[ f {(?F j‘ pE@)cE(o)do+ %k;(ﬂﬁ(—) - J W*(x) da}ZdZ dz
0 Jz. 0 0z 0

+5f %h;G[BF_gG(Zy)]ZdT|Z=I = 0. (3.8)
0

For the clad, one has

T rZ,. -1 696 2
8, J J {(’G j pE(a)c () da +%k("§(06)(—) }Z dzdz
0JZ, (] aZ

+%Zw5j‘ hc(06—0c)* delz-5, +30 j felc—0p(1)])* dtlz-5, = 0. (3.9)
0 0

In these expressions, the heat transfer coefficients may depend on the variables Z and 7 but not on the
temperature. By varying with respect to 8, one recovers from (3.8) the heat equation for the fuel and the
appropriate boundary conditions (2.9) and (2.10). In the same way, by varying with respect to 0 in (3.9), one
derives that the necessary conditions for (3.9) to hold true are that equations (2.8) as well as (2.11) and (2.12)
are satisfied.
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We shall seek approximate solutions for the temperature profiles in both the fuel and the cladding by using
Kantorovitch’s partial integration method. It consists of separating the variables Z and t in the trial function

which is given in the general form:
M

D(Z.otr=3Y "2 x), i=F.G. (310

el

f"Z) are a priori given functions of the space varialbe and g"'(7) are unknown functions. The latter are
obtained as solutions of the Euler- Lagrange equations of the problem. In the present case, they take the form
of ordinary differential equations of the first order.

4. TEMPERATURE FIELD IN THE FUEL ELEMENTS

By application of the variational operator o respectively to the integrands of (3.8) and (3.9), recalling that
(' and k*(9) are not to be varied, one obtains:

For the fuel pin:
T 1
)
For the cladding:

Pz co A
J f pXF00 +k* o § ﬂ) ‘ZdZ dt+Z,
0 Jz, ? V4
(4.1b)

cZ 0
For simplicity, index t affecting symbol ¢ has been omitted. Since no confusion is possible, indices F and G
have also been omitted.

. 0 /70 ' ‘
preHI00 +k* ‘5(22)‘ W*o‘t)]ZdZdran Ita[0—06(Z,)]00dz|, , = 0; (4.12)
( .

L 0

t T

hEc(0—0c)00dt|;. 5. +J h¥c[0—0,(1)]00dt]z. 4, = 0.

0

/

4.1. Temperature field in the Juel
We take for the temperature field ¢ a trial function of the form:
! | }
NZ, 1) = A2 (Z=Zo) 4y —d2)+q2, (A =1-Zg) (4.2)

from which,

]
oNZ. 1) = A2 (Z—Z4)04, +

) |
1 ‘Kl' (Z*‘Z())Zl(j(ll. (43)

Physically, ¢; and ¢, represent the temperatures of the outer and inner faces respectively.
Both parameters ¢, and ¢, are unknown functions of time. their initial values are determined with the help
of the least square principle:
1
s f
VA

8(Z, 0) is the expression (4.2) wherein ¢, and ¢, have been replaced by their initial value: one finds, with the
experimentally given 0,,.(Z),

- 12
"z, ())4)<)F(Z)J Zdz = 0. (4.4)

4 (0) = 1.0121, ¢,(0) = 1.8898. (4.5,
Substitution of (4.2} and (4.3) in (4.1a) produces a linear form
Q(Z. 1)y, +Q,(Z, 1)dg, = 0. (4.6)

Since 0g, and dq, are arbitrary, the coefficients @, and @, must identically vanish.
They are respectively given by:
! : . g - 42 M .
(1 —da) 5 | PRHZ~Z)2dZ + 5 | preX (L= 7o) Z dZ
AT Jz. AR
1 1 4 1
- J WH(Z — Zo P2 dZ + s a2 f KHZ—ZoPZdZ +helq, —06(Z,)] =0, (47)

z Z

G—d) ([, R I LR B ,
T pre¥ L —-Z,) lfAzilflo) ZdZ+q, p¥e I_BE(Z—ZO)

z

Z dZ}

~1

- J W
7.

1

| B 4
I*Al (Z—2Zy) l‘dl—g’_{ (‘11“‘12)[

z

k¥Z—~2,ZdZ = 0. (4.8)
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Setting:
31
- 72§ P

Lj—p. p*¥c*(Z—-2Z,)¥ZdZ, j=0,1,2 (4.9)

1 'l
M, = yl W*(Z Z,Yyzdz, j=0,2 (4.10)

1 *1

N2=E , k*Z—-Z,)*ZdZ, (4.11)

expressions (4.7) and (4.8) may be written as

- j 4N, +h¥, —4N | M, +h},0,(Z)
(Lz L,-L, )<Q1)+( 2+ z)(£11)=< 2 Hhfal( ))’ 4.12)
L,-L, L,—2L,+L, _4N, an, Ng,)  \M,—M, ,

or in a compact form,

A-q+B¢q=C, (4.13)

where A and B are symmetric matrices and C a vector. Solving with respect to q yields:

¢+D q=4d, (4.14)

where
D=A"1B, d=A"'-C (4.15)

In most problems, equation (4.14) is a nonlinear differential equation since generally D and d depend
themselves on q through the integrals L;, M, and N,. In the particular case that the thermal properties as well
as the source term are temperature-independent, equation (4.14) becomes linear and its solution is simply

*r

qir)=-e ePd(a)da+q(0) |. (4.16)

«0

4.2. Temperature field in the cladding
The trial function is selected to be of the same form as for the fuel pin, i.e.

1
0(Z, 1) = A2 (Zy~ZVq:—qs) +ds, (A=Z,-2,), (4.17)

g4 and g, being respectively the outer and inner surface temperatures of the cladding.
Following the same procedure as in Section 4.1, one obtains the set of ordinary differential equations:

(Lz L-L, ‘<43" +<4Nz+hfu —4N, (‘13‘ _<M2+h:(,0:( ) ‘ 418
L—-L, L2—2L1+L0) ‘14) —4N, 4N, +th?§(‘) ‘14) —My+Mo+ZEhE . .
The integrals L;, M; and N, are the same as integrals (4.9) to {4.11) except that the lower and upper bounds
are now Z, and Z,, respectively and A = Z—Z  instead of 1 - Z,

This system may be written in the same matricial form as (4.14) and its solution is still expressed by (4.16).

In a hot state, after a sufficient irradiation time, the fuel pin expands by dilatation and comes in contact
with the cladding so that Z, = Z, = 1 [20]; Z,, is taken to be equal to 1.19.

The temperature profile in the claddlng is strongly correlated to what happens in the fuel: as seen in (4.18),
it depends on the value of 8,(1), derived from the fuel analysis. In the same way, it appears from (4.12) that
the fuel temperature distribution depends on the value of #;(Z,). In that respect. the problem is a coupled
one.

In a previous work [20], we completely uncoupled the problem by assuming that the temperature 0.(Z,) at
the inner surface of the cladding and the heat flux q, through this face are extrapolated at each time step.

These restrictions are relaxed in the present work.

4.3. Test of the quality of the trial functions

By appealing to a variational technique involving either “exact” or restricted variational principles, the
crucial point is the selection of the most adequate trial function. Clearly, the better the choice of the trial
function, the better the final result. To check the quality of the expansions (4.2) and (4.17) we compare with a
similar linear problem whose exact solution is known.
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It is the case for the problem of transient heat conduction in an infinite hollow cylinder (1 < Z < a) whose
lateral surface are submitted to the following radiation-type boundary conditions:

oo

5 = h(0-10,),

oz
at

(

at Z =1
(4.19)

a j]E = —h’{(@—()z), at Z=a.

ht and h% are the heat transfer coefficients at the surfaces Z =1 and Z = a respectively, 6, and 0, the
constant temperatures of the surrounding media. For constant thermal properties and in absence of internal
heat supply, the temperature profile is known and explicitly given in [21].

The variational and the exact solutions are compared in Table 2. The differences observed are of the order
of 19;, which attests of the quality of the selected trial function. If the selected trial function had given poor
results for this simplified problem, it is clear that it would have been inadequate for the more complicated fuel

element problem.

5. NUMERICAL ANALYSIS

S.1. The numerical scheme

Instead of solving (4.14) by classical methods, like
Runge—Kutta—Gill’s technique, the nonlinear heat
conduction problem has been approximated by a
succession of linearized problems in order to reduce
the computational time. If the macro-time interval
0—1 is divided into several micro-steps Az sufficiently
small, the thermal quantities and the heat source
may be considered as constants, as well as D and d.
Under these conditions, (4.16) furnishes an explicit
finite difference scheme for the integration of (4.14)
and can be written as

qit+AT) = I—e P2)D - d 4 q(r) e D,
(5.1)

where I is the unity matrix.

To solve equation (5.1), one has the choice
between three methods [22].

1. The forward explicit difference method: this
consists of developing the matrix exp(—AtD) in a
series expansion limited to the first order term in Az,
namely

exp(—AtD) = 1— A7D. (5.2)

2. The backward implicit difference method: the
matrix exp(— AtD) is approximated by (I +AtD) "

3. The Crank—Nicolson implicit method which
approximates the exponential term by:

_ ArD‘1 1 ATD
1+ (—7 .

It is interesting to compare the respective merits of
these three methods.

While the first method is explicit, the two other
ones are implicit, which implies the solution of a
matrix problem.

A stability analysis based on Lyapounov’s second
method shows that the matrix approximations used
in the backward difference and the Crank-Nicolson
methods are unconditionally stable. On the other
hand, the forward difference method is only stable
for a time step obeying the following criterion:

(5.3)

(54)

the A;'s are the eigenvalues of D, Re means their real
part and |4, their norm.

Concerning the accuracy, the two first schemes are
of the first order in At while the Crank-Nicolson
scheme is of the second order in Az. The latter one is
undoubtedly the most efficient from the numerical
point of view. However, for a numerical code
involving the shortest computing time, the explicit
method is recommended.

Although the differential equation is given in
matrix form, the numerical procedure based on an
explicit method does not require the manipulation of
matrices. Indeed, expression (5.1) reduces to a set of
algebraic equations involving only exponential terms
like exp(—Az4;) coming from the diagonalization of
the exponential matrices.

Moreover, since a piecewise linear approach is
used to handle the non-linearities, the updating of D
and d at each time step is required. Once more,
the explicit scheme (5.1) is the most appropriate
technique for achieving this objective.

For all these reasons, the forward explicit differ-
ence scheme has been retained in the present work.
The limitation on the time-step At imposed by (5.4)
is not an important handicap with respect to implicit
methods. Indeed, to attain a sufficient accuracy in an
implicit scheme, the time step must be reduced until
there is a negligible difference between two successive
solutions. This needs several heavy programme
executions. By using an explicit method, one avoids
such additional calculations; the step size At is
selected as large as possible within the limits
imposed by (5.4). Of course, to follow the fast
transients of the present problem, Az will be chosen
very short so that the restrictions prescribed by (5.4)
are practically not constraining.

The time step At is at most equal to twice the
inverse of the greatest eigenvalue of D in order to
ensure stability of (5.1). In each micro-step Ar, the
Kantorovitch procedure is repeated by taking as
initial value for q the value computed at the end of
the previous micro-step. In the coupled problem, the
numerical calculations run as follows. The eigen-
values of D are calculated in the fuel pin and in the
cladding successively and the corresponding time
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steps At and At in each of them are determined;
Az, is found to be of the order of 100Az,;.

The temperature distributions in the fuel pin, and
in particular the outer surface temperature 6,(1), are
predicted by (5.1) at the end of a micro-step At,.
During each step At,, the clad temperature distri-
bution is then calculated with the help of (5.1)
wherein At = At; until the value Ar, has been
reached. The inner clad temperature 64;(1) is then
obtained. That value could be used to correct 8,(1).
The new value of 6.(1) should allow itself the
correction of 6,;(1). It has been verified that such a
process does not increase significantly the precision
so that a prediction-correction procedure is not
necessary. The previous operations are repeated at
each time step Ar, until the stationary state is
reached in both the fuel pin and the cladding.

The method developed here presents the advan-
tage of very short computational times. With an
LB.M. 370/158 computer, the C.P.U. time is of the
order of 80sec to reach the steady state. Of course,
by using more unknowns, the dimension of the
matrices A, B, C would increase and consequently the
computing time.

5.2. Results and discussion

The fuel inner radius is taken to be equal to 10%,
of the external radius. The experimental source term
g(Z) and the porosity factor f[£(Z)] are assumed to
be fitted by the following Fourier expansions:

gz) n Z)
1-2,

f[f(Z)]k = i amcos(m
+ é bmsin(ml_nz Z).

m=0
The parameters a,, and b,, have been computed by a
least square method.

The temperature profiles are presented in Figs. 2
and 3. During the decay in intensity of the heat
source (from 100 to 159 of its initial value in 1s in
the first case, and from 100 to 0% in 0.1 s, in a second

1.0t

02 04 06 08 10 Z
F1G. 2. Temperature profiles in the fuel pin as a function of

the radial distance and the time. The heat source drops
from 100 to 15%; of its initial value in 1 s.
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F1G. 3. Temperature profiles at the inner and outer faces of
the fuel pin for two different behaviours of the heat source:
(1) decrease from 100% to 15%, of its initial value in 1s
(continuous lines);
(2) decrease from 1002 to zero in 0.1's (dashed lines).

case), the following qualitative behaviour of the fuel
element has been observed. The fuel temperature on
the inner face of the central hole falls down
continuously while it increases at the outer face; this
phenomenon is observed during the decay of the
source term. After that the source intensity is kept
constant, the temperature decreases again at the
outer face. This behaviour is due to the decay of the
convective heat transfer coefficient h},,.

The stationary state in the fuel is reached after
3.64s in the first case, and after 2.4s in the second
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F1G. 4. Temperature profiles in the cladding as a function
of the radial distance and the time. The heat source drops
from 100 to 15%, of its initial value in 1 s,



1196

Table 2. Comparison between the exact 6,,.,, and the variational 6,

G. LEBON and PH. MATHIEU

temperature profiles in a

ur

hollow cylinder (linear problem)

.
\\ T
Z N 0.1 0.2 03 0.35
Bihcor 0. B neor O Bipeor (. Bineor .

1.039 2686 2649 2761 2793 2765 2806 2765  2.807
1.059 2664 2631 2737 2777 2740 2790 2740 2791
1.079 2644 2611 2715 2761 2719 2774 2719 2775
1.099 2627 2599 2696 2745 2699 2758 2700 2759
1.119 2611 2586 2680 2730 2683 2743 2683 2743
1.139 2599 2574 2666 2715 2669 2727 2669 2728
1.159 2588 2564 2654 2700 2657 2713 2657 2713
1.179 2580 2555 2646 2687 2649 2698 2649 2699
1.199 2575 2548 2639 2673 2642 2684 2642 2684
1.219 2571 2542 2636 265 2699 2670 2639 2670

Table 3. Variation in time of the following quantities: temperature at the inner (g,) and
outer (g,) faces of the fuel pin, temperature at the inner (g,) and outer (g,) faces of the
clad ; inner heat flux through the clad (q;- n)

T t(s) qz 9 q3 ‘N g, n
6r(Zo) (1) f(1) 0(Zw)
0 0 1.890 1.012 0.592 0.547 1.804
0.058 0.343 1.814 1.054 0.582 0.533 1.461
0.105 0.619 1.654 1.086 0.579 0.559 1.069
0.162 0.960 1.404 1.133 0.578 0.568 0.502
0.198 1.170 1.316 1.105 0.577 0.569 0.400
0.303 1.796 1.145 0.996 0.571 0.565 0.322
0.401 2.373 1.070 0.948 0.568 0.562 0.288
0.494 2924 1.050 0.935 0.568 0.562 0.279
0.616 3.650 1.046 0.932 0.567 0.562 0.277
Table 4a. Effects of the nonlinearities on Table 4b.
the temperature profile in the fuel
Temperature
Relative error %, dependent Constant thermal
Step number  thermal properties properties
e T At /At T Az, /At
AN
B 0.139 0.439
P \ i 0 0
54 24
0.1 239 134 2 0.018 0.020
0.2 238 134 98 24
0.3 23.6 133 3 0.057 0.062
0.4 233 13.1 98 24
0.5 22.8 129 4 0.096 0.104
0.6 22.1 12.4 98 24
0.7 21.5 120 S 0.0135 0.146
0.8 20.5 114 - 24
0.9 194 10.7 12 0.342 0.438
1.0 18.1 10.0 52 24
13 0.363 0.480
50
case. In fact, the stationary state is an equilibrium 14 0.382 - Stationary state
one characterized by a uniform temperature 19 0476
distribution. 46
20 0.495

The temperature field in the cladding is reported
on Fig. 4 for the first case. There is a temperature
jump at the interface between the fuel and the
cladding due to the thermal resistance of the contact.
The inner clad temperature decreases gradually to its
stationary value while the outer temperature in-
creases practically until the coolant temperature
becomes constant (after 1s); afterwards, it decreases
to its stationary value. The temperature in the clad

Stationary state

reaches its steady value faster than does the
temperature in the fuel. Moreover, the former varies
in a range of only 0.4%, while the heat flux through
the inner face of the clad drops appreciably (see
Table 3).
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To examine the effects of the nonlinearities, we
have repeated the calculations by assuming that all
the thermal properties are constant and equal to
their value corresponding to the mean temperature
8 = 1.58. The fuel temperature distribution has been
calculated at various instants of time for a drop of
the heat source from its initial value to zero. The
relative error with respect to the values calculated in
the nonlinear case ranges between 10 and 24%, (see
Table 4a). Moreover, the ratio of the time steps
Az, /Az,, is now constant {see Table 4b) and equal to
24 while for the nonlinear problem it varies from
step to step with a maximum value equal to 98. The
stationary state is obtained after 20 steps in the
nonlinear problem, after 13 steps in the linear case.
All these results indicate clearly that the non-
linearities play an important role.

6. CONCLUSIONS

The transient temperature field in a fuel element
has been computed by using Kantorovitch’s vari-
ational technique. The method involves only two
pairs of unknown parameters which are determined
as solutions of four ordinary differential equations.
The method is general in that it can be applied
whatever the dependence of the thermal properties,
the internal heat source terms and the boundary
conditions with respect to the temperature or the
space and time variables. The analysis has been
restricted to a one-dimensional problem in space.

The extension to two or three dimensions should
not raise fundamental difficulties but would com-
plicate the procedure in that more involved trial
functions must be selected. The same method can be
easily extended for temperature dependent heat
sources and heat transfer coefficients.

For the linear problem of heat conduction in an
infinite hollow cylinder, the results of the variational
method have been compared with the exact ones: an
accuracy of 1% has been obtained. It is reasonable to
expect the same order of accuracy for the problem of
the heat transfer in the fuel element. This accuracy is
more than sufficient for most situations encountered
in nuclear engineering.
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CALCUL NUMERIQUE DE LA CONDUCTION THERMIQUE TRANSITOIRE ET NON-
LINEAIRE DANS LES ELEMENTS COMBUSTIBLES DE REACTEUR NUCLEAIRE

Résumé—On propose une méthode variationnelle pour résoudre le probléme du transfert thermique en
régime transitoire dans les éléments d’un réacteur nucléaire. Le point de départ est le principe
variationnel de Lebon-Lambermont, lequel sest révélé étre particulierement efficace pour traiter les
problémes de conduction thermique. On utilise la méthode par intégration partielle de Kantorovitch.
Aprés avoir sélectionné une fonction d’essai mettant en jeu deux parameétres inconnus mais fonction du

HMT Vol. 22, No. §--C
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temps, on calcule la distribution de la température dans le crayon combustible et dans la gaine. On

analyse en particulier les conséquences d’une chute de barres dans un reacteur nucléaire. La methode est

generale en ce sens qu'elle est susceptible d’étre appliquée quelle que soit la nature des conditions aux

limites, linéaires ou non-lineaires, et la forme de la dépendance des propriétés thermiques vis-a-vis de la
temperature.

UUCJEHHBIA PACUET HEJTUMHENHOIO HECTALIMOHAPHOI'O ITPOLIECCA
TEMNJONPOBOJHOCTHU B TB3Jlax IAEPHOIO PEAKTOPA

Aunoraums — [IpeIoXeH BapHALIMOHHBIH METOJl PEIUEHHS HECTALMOHAPHON 3aJa4M TENJONpoBOA-
Hoctu B TB3Jlax saepHoro peakTopa. 3a ocHOBY B3T BapHauMoHHbIH npuauun JleGona—Jlambepmona,
CApaBeUTHBOCTh KOTOPOTO ObUia NPOBEPEHA NMPH PEIEHHM 3aJa¥ TEMNonpoBoAHocTH. Hcnons3iosau
Metoa KaHTOpOBHYa MHTErpHPOBaHHY AHG(EpPEeHLHANbHBIX YPABHEHHI B YaCTHLIX HPOU3BOAHBIX.
[Mocne BuiGopa npobuoii dyHKUMH, B KOTOPYIO BXOMAT ABA HEM3BECTHBIX, 3aBHCALUIMX OT BPEMEHH,
napaMeTpa, pPacCYMTHIBAETCA pacrpelcieHHe TeMnepaTyp B cTepkHe M B 060704YKe 3MeMeHTa.
B 4acTHOCTH, npoBeNeH aHa/lW3 TMOCIEACTBHH OCTAHOBKH SEPHOTO peakTopa. Mertoa sBaseTCA
OoOIIMM, TaK KakK €ro MOXHO MCNO/Ib30BAaTh MPH MOOBIX TPAHHYHLIX YCNOBHAX, JIMHEHHBIX WIH
HEJTHHEHHBIX, H NPH 32BHCHMOCTH TEIIOPH3IUYECKHX CBOMCTB OT TEMNEPaTyphL.

NUMERISCHE BERECHNUNG VON NICHTLINEARER INSTATIONARER
WARMELEITUNG IN DEN BRENNELEMENTEN EINES KERNREAKTORS

Zusammenfassung—Es wird eine Variations-Methode zur Losung des instationiren Wairmetran-
sportproblems in den Brennelementen eines Kernreaktors vorgeschlagen. Ausgangspunkt ist das
Variations-Prinzip von Lebon-Lambermont, das sich zur Behandlung von Wirmeleitproblemen als
besonders geeignet erwiesen hat. Das partielle Integrations-Verfahren von Kantorovitch wird angewandt.
Nach Auswahl einer Ausgangs-Funktion mit zwei unbekannten zeitabhidngigen Parametern wird die
Temperaturverteilung im Brennstab und dessen Ummantelung berechnet. Insbesondere werden die
Folgen einer Reaktorabschaltung analysiert. Die Methode ist allgemein und kann insofern fiir --lineare
oder nichtlineare— beliebige Randbedingungen sowie fiir beliebig temperaturabhingige Stoffeigenschaften
angewendet werden.



